Quantum-Classical Wigner-Liouville Equation
نویسندگان
چکیده
منابع مشابه
Mapping quantum-classical Liouville equation: projectors and trajectories.
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator c...
متن کاملFully adaptive propagation of the quantum-classical Liouville equation.
In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. ...
متن کاملHeisenberg Uncertainty Relation in Quantum Liouville Equation
We consider the quantum Liouville equation and give a characterization of the solutions which satisfy the Heisenberg uncertainty relation. We analyze three cases. Initially we consider a particular solution of the quantum Liouville equation: the Wigner transform f x,v,t of a generic solution ψ x;t of the Schrödinger equation. We give a representation of ψ x, t by the Hermite functions. We show ...
متن کاملAnalysis of the quantum-classical Liouville equation in the mapping basis.
The quantum-classical Liouville equation provides a description of the dynamics of a quantum subsystem coupled to a classical environment. Representing this equation in the mapping basis leads to a continuous description of discrete quantum states of the subsystem and may provide an alternate route to the construction of simulation schemes. In the mapping basis the quantum-classical Liouville e...
متن کاملA derivation of the mixed quantum-classical Liouville equation from the influence functional formalism.
We show that the mixed quantum-classical Liouville equation is equivalent to linearizing the forward-backward action in the influence functional. Derivations are provided in terms of either the diabatic or adiabatic basis sets. An application of the mixed quantum-classical Liouville equation for calculating the memory kernel of the generalized quantum master equation is also presented. The accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2005
ISSN: 0041-5995,1573-9376
DOI: 10.1007/s11253-005-0237-0